Multi-Toxin Resistance Enables Pink Bollworm Survival on Pyramided Bt Cotton
نویسندگان
چکیده
Transgenic crops producing Bacillus thuringiensis (Bt) proteins kill key insect pests, providing economic and environmental benefits. However, the evolution of pest resistance threatens the continued success of such Bt crops. To delay or counter resistance, transgenic plant "pyramids" producing two or more Bt proteins that kill the same pest have been adopted extensively. Field populations of the pink bollworm (Pectinophora gossypiella) in the United States have remained susceptible to Bt toxins Cry1Ac and Cry2Ab, but field-evolved practical resistance to Bt cotton producing Cry1Ac has occurred widely in India. Here we used two rounds of laboratory selection to achieve 18,000- to 150,000-fold resistance to Cry2Ab in pink bollworm. Inheritance of resistance to Cry2Ab was recessive, autosomal, conferred primarily by one locus, and independent of Cry1Ac resistance. We created a strain with high resistance to both toxins by crossing the Cry2Ab-resistant strain with a Cry1Ac-resistant strain, followed by one selection with Cry2Ab. This multi-toxin resistant strain survived on field-collected Bt cotton bolls producing both toxins. The results here demonstrate the risk of evolution of resistance to pyramided Bt plants, particularly when toxins are deployed sequentially and refuges are scarce, as seen with Bt cotton and pink bollworm in India.
منابع مشابه
Asymmetrical cross-resistance between Bacillus thuringiensis toxins Cry1Ac and Cry2Ab in pink bollworm.
Transgenic crops producing Bacillus thuringiensis (Bt) toxins kill some key insect pests and can reduce reliance on insecticide sprays. Sustainable use of such crops requires methods for delaying evolution of resistance by pests. To thwart pest resistance, some transgenic crops produce 2 different Bt toxins targeting the same pest. This "pyramid" strategy is expected to work best when selection...
متن کاملIncreased Frequency of Pink Bollworm Resistance to Bt Toxin Cry1Ac in China
Transgenic crops producing insecticidal proteins from Bacillus thuringiensis (Bt) kill some key insect pests, but evolution of resistance by pests can reduce their efficacy. The main approach for delaying pest adaptation to Bt crops uses non-Bt host plants as "refuges" to increase survival of susceptible pests. To delay evolution of pest resistance to transgenic cotton producing Bt toxin Cry1Ac...
متن کاملResistance to Bacillus thuringiensis toxin Cry2Ab and survival on single‐toxin and pyramided cotton in cotton bollworm from China
Evolution of Helicoverpa armigera resistance to Bacillus thuringiensis (Bt) cotton producing Cry1Ac is progressing in northern China, and replacement of Cry1Ac cotton by pyramided Bt cotton has been considered to counter such resistance. Here, we investigated four of the eight conditions underlying success of the refuge strategy for delaying resistance to Cry1Ac+Cry2Ab cotton, a pyramid that ha...
متن کاملNovel Pink Bollworm Resistance to the Bt Toxin Cry 1Ac: Effects on Mating, Oviposition, Larval Development and Survival
Bt cotton plants are genetically engineered to produce insecticidal toxins from the Bacillus thuringiensis (Bt) Berliner (Bacillales: Bacillaceae) bacterium and target key lepidopteran pests. In all previous strains of pink bollworm, Pectinophora gossypiella (Saunders) (Lepidoptera: Gelechiidae) selected in the laboratory for resistance to insecticidal Cry1Ac toxin using an artificial diet cont...
متن کاملDelayed resistance to transgenic cotton in pink bollworm.
Transgenic crops producing Bacillus thuringiensis (Bt) toxins kill some key insect pests and thus can reduce reliance on insecticides. Widespread planting of such Bt crops increased concerns that their usefulness would be cut short by rapid evolution of resistance to Bt toxins by pests. Pink bollworm (Pectinophora gossypiella) is a major pest that has experienced intense selection for resistanc...
متن کامل